博客
关于我
端元提取、光谱角、端元提取光谱角检测模型
阅读量:480 次
发布时间:2019-03-06

本文共 537 字,大约阅读时间需要 1 分钟。

端元及其提取解析

什么是端元?

端元(endmember)是地物信息的最简形式,通常与混合像元相对。混合像元包含多种地物信息,而端元仅包含一种地物特征。在像元分解过程中,可以通过定量分析各端元在混合像元中的面积比例,即端元丰度(abundance),来描述端元的分布。

端元提取的基本原理

端元提取(endmember extraction,EE)主要包含两个关键步骤:端元识别和端元提取。基于几何特征的端元识别方法常采用以下降维技术:

  • 主成分分析(PCA):用于去除噪声,降维。
  • 多因子分析(MNF):进一步优化降维效果。
  • 独立校正(IC):增强数据相关性分析。

通过这些降维方法,相关性较低的波段被选定作为二维散点图的横纵轴。散点图中凸出区域的端元候选区域对应的平均波谱即为目标端元。

光谱角的意义

光谱角(spectral angle,SA)反映光谱曲线的相似性程度。其值越接近0,表明光谱波形越相似,地物特征越一致。

端元提取与光谱角结合的优势

将端元提取与光谱角相结合,可以构建无损检测模型。该模型通过以下步骤实现:

  • 提取所有端元波谱;
  • 将受损区域波谱与端元波谱进行匹配,识别缺损部分的端元组合。
  • 这种方法能够有效评估受损区域的光谱特征,保证检测的准确性和可靠性。

    转载地址:http://hljdz.baihongyu.com/

    你可能感兴趣的文章
    nio 中channel和buffer的基本使用
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    NI笔试——大数加法
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>
    NN&DL4.3 Getting your matrix dimensions right
    查看>>
    NN&DL4.8 What does this have to do with the brain?
    查看>>
    No 'Access-Control-Allow-Origin' header is present on the requested resource.
    查看>>
    No Datastore Session bound to thread, and configuration does not allow creation of non-transactional
    查看>>
    No fallbackFactory instance of type class com.ruoyi---SpringCloud Alibaba_若依微服务框架改造---工作笔记005
    查看>>
    No Feign Client for loadBalancing defined. Did you forget to include spring-cloud-starter-loadbalanc
    查看>>
    No mapping found for HTTP request with URI [/...] in DispatcherServlet with name ...的解决方法
    查看>>
    No module named cv2
    查看>>
    No module named tensorboard.main在安装tensorboardX的时候遇到的问题
    查看>>